\(y=\frac{x}{x^2+2}\le\frac{x}{2\sqrt{2x^2}}=\frac{1}{2\sqrt{2}}\)
Dấu "=" xảy ra khi \(x^2=2\Rightarrow x=\sqrt{2}\)
\(y=\frac{x}{x^2+2}\le\frac{x}{2\sqrt{2x^2}}=\frac{1}{2\sqrt{2}}\)
Dấu "=" xảy ra khi \(x^2=2\Rightarrow x=\sqrt{2}\)
Tìm GTNN của biểu thức \(y=x^2+\frac{2}{x^3}\) vs x>0
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\)
cho x,y là 2 số thực thỏa mãn \(2\left(x^2+y^2\right)+xy=1.\) tìm min và max của bth P=\(2\left(x^4+y^4+1\right)+\left(x+y\right)^2\)
Tìm Max của biểu thức F(x;y) = x+2y với điều kiện \(\left\{{}\begin{matrix}0\le y\le4\\x\ge0\\x-y-1\le0\\x+2y-10\le0\end{matrix}\right.\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
1. Giải bft ( lập bảng xét dấu nếu cần )
\(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
2. Chứng minh: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\) ; với a,b,c > 0
3. Cho x,y,z > 0 thỏa mãn x+y+z = 1. Tìm GTLN của biểu thức: P = \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
cho a,b,c>0 thỏa x2+y2+z2=1.tìm gtnn của P=\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)
Tìm Max của hàm số
y = f(x) = \(\left|\dfrac{2x^2+x-1}{x^2-x+1}\right|\)
Cho các số thực \(x^2+y^2=1\)
Tìm Max, Min của biểu thức \(P=\dfrac{4x^2+2xy-1}{2xy-2y^2+3}\)