Lời giải:
Trước tiên để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(2m+1)^2-4(m^2-1)>0$
$\Leftrightarrow 4m+5>0\Leftrightarrow m> \frac{-5}{4}$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m+1\\ x_1x_2=m^2-1\end{matrix}\right.\)
Để $x_1< -1< x_2$
$\Leftrightarrow (x_1+1)(x_2+1)< 0$
$\Leftrightarrow x_1x_2+(x_1+x_2)+1< 0$
$\Leftrightarrow m^2-1+2m+1+1< 0$
$\Leftrightarrow m^2+2m+1< 0\Leftrightarrow (m+1)^2< 0$ (vô lý)
Vậy không tồn tại $m$ thỏa mãn yêu cầu đề bài.