Ôn tập chương IV

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DuaHaupro1

Tìm m để phương trình \(\left(m+1\right)x^2+2\left(m+4\right)x+m+1=0\) có hai nghiệm cùng âm

Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 21:43

Trường hợp 1: m=-1

Pt sẽ là 6x=0

hay x=0

=>Loại

Trường hợp 2: m<>-1

Để phương trình có hai nghiệm cùng âm thì 

\(\left\{{}\begin{matrix}\text{Δ}>0\\\dfrac{2\left(m+4\right)}{m+1}< 0\\\dfrac{m+1}{m+1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+8\right)^2-4\left(m+1\right)^2>0\\\dfrac{m+4}{m+1}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4\left(m^2+2m+1\right)>0\\-4< m< -1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+32m+64-4m^2-8m-4< 0\\-4< m< -1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24m+60< 0\\-4< m< -1\end{matrix}\right.\Leftrightarrow-4< m< -2.5\)


Các câu hỏi tương tự
DuaHaupro1
Xem chi tiết
Thảo Nguyên
Xem chi tiết
DuaHaupro1
Xem chi tiết
abc
Xem chi tiết
Jack Viet
Xem chi tiết
Jack Viet
Xem chi tiết
DuaHaupro1
Xem chi tiết
camcon
Xem chi tiết
DuaHaupro1
Xem chi tiết