ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x=t^2-1\)
Pt trở thành: \(2t=t^2-1+m\Leftrightarrow-t^2+2t+1=m\)
Xét hàm \(f\left(t\right)=-t^2+2t+1\) với \(t\ge0\)
\(-\dfrac{b}{2a}=1>0\) ; \(f\left(0\right)=1\) ; \(f\left(1\right)=2\)
\(\Rightarrow f\left(t\right)\le2\Rightarrow\) pt có nghiệm khi và chỉ khi \(m\le2\)