Pt hoành độ giao điểm:
\(\frac{2x+1}{x+1}=x+m-1\Leftrightarrow x^2+\left(m-2\right)x+m-2=0\)
\(\Delta=\left(m-2\right)^2-4\left(m-2\right)>0\Rightarrow\left[{}\begin{matrix}m< 2\\m>6\end{matrix}\right.\)
\(AB=2\sqrt{3}\Leftrightarrow AB^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(x_A+m-1-x_B-m+1\right)^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2=6\)
\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=6\)
\(\Leftrightarrow\left(m-2\right)^2-4\left(m-2\right)-6=0\)
\(\Rightarrow\left[{}\begin{matrix}m-2=2+\sqrt{10}\\m-2=2-\sqrt{10}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4+\sqrt{10}\\m=4-\sqrt{10}\end{matrix}\right.\)