Định k để phương trình : \(kx^2+\left(2k-1\right)x+k-2=0\) có tổng bình phương các nghiệm là 2018.
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
a) Giải phương trình khi k = - 3
b) Tìm k để phương trình có nghiệm x1; x2 thỏa mãn \(x_1^2+x_2^2=x_1x_2+28\)
Cho HPT: \(\left\{{}\begin{matrix}2x+ky=1\\kx+2y=1\end{matrix}\right.\) (k là tham số). Tìm k để hệ phương trình có nghiệm
Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0 (m là tham số)
Tìm k để phương trình có nghiệm x1; x2 thỏa mãn\(x_1^2+x_2^2=x_1x_2+28\)
CHo hai phương trình: \(x^2+x+k-1=0\left(1\right)\) và \(x^2-\left(k+2\right)x+2k+4=0\left(2\right)\). Với giá trị nào của k thì 2 phương trình trên tương đương
tìm k để phương trình \(x^2-6x+5=k\left|2x-1\right|\) có nghiệm duy nhất
cho các phương trình
x2-5x+k=0 và x2-7x+2k=0
xác định k để 1 trong các ngiệm của pt (2) lớn gấp 2 lần một trong các nghiệm của pt (1).
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)