a: Thay k=-3 vào pt, ta được:
\(x^2-2\cdot\left(-3+2\right)x+\left(-3\right)^2+2\cdot\left(-3\right)-7=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
hay \(x\in\left\{\sqrt{5}-1;-\sqrt{5}-1\right\}\)
b: \(\text{Δ}=\left(2k+4\right)^2-4\left(k^2+2k-7\right)\)
\(=4k^2+16k+16-4k^2-8k+28\)
=8k+44
Để phương trình có hai nghiệm thì 8k+44>=0
=>8k>=-44
hay k>=-11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=28\)
\(\Leftrightarrow\left(2k+4\right)^2-3\cdot\left(k^2+2k-7\right)=28\)
\(\Leftrightarrow4k^2+16k+16-3k^2-6k+21=28\)
\(\Leftrightarrow k^2+10k+37-28=0\)
\(\Leftrightarrow\left(k+1\right)\left(k+9\right)=0\)
=>k=-1