Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

Cho phương trình x2 – 2(k + 2)x + k2 + 2k – 7 = 0  (m là tham số)

Tìm k để phương trình có nghiệm x1; x2 thỏa mãn\(x_1^2+x_2^2=x_1x_2+28\)

Nguyễn Thanh Hằng
6 tháng 2 2022 lúc 23:36

Xét pt :

\(x^2-2\left(k+2\right)x+k^2+2k-7=0\)

\(\Delta'=\left(k+2\right)^2-\left(k^2+2k-7\right)\)

\(=k^2+4k+4-k^2-2k+7\)

\(=2k+11\)

Để phương trình có 2 nghiệm pb \(\Leftrightarrow k>-\dfrac{11}{2}\)

Theo định lí Viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(k+2\right)\\x_1.x_2=k^2+2k-7\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=x_1.x_2+28\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=3x_1.x_2+28\)

\(\Leftrightarrow4\left(k+2\right)^2=3\left(k^2+2k-7\right)+28\)

Tự giải hết pt tìm k nhé :> Buồn ngủ quá ~


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
hello hello
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
nga nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết