Ta có:\(x^2+8x=x^2+2.x.4+4^2-16\)
\(=\left(x+4\right)^2-16\)
Do \(\left(x+4\right)^2\ge0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=-4\))
\(\Rightarrow\left(x+4\right)^2-16\ge-16\) hay \(x^2+8x\ge-16\) (dấu "=" xảy ra \(\Leftrightarrow x=-4\))
Vậy giá trị nhỏ nhất của biểu thức \(x^2+8x\) là \(-16\) tại \(x=-4\)