M>0
Đk \(-2\le x\le6\)
Có \(M^2=x+2+2\sqrt{\left(x+2\right)\left(6-x\right)}+6-x=8+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Luôn có:\(0\le2\sqrt{\left(x+2\right)\left(6-x\right)}\le x+2+6-x\)
<=> \(8\le8+2\sqrt{\left(x+2\right)\left(6-x\right)}\le8+8\)
<=> \(8\le M^2\le16\)
<=>\(2\sqrt{2}\le M\le4\)( do M>0)
minM=2\(\sqrt{2}\) <=> \(2\sqrt{\left(x+2\right)\left(6-x\right)}=0\)
<=> (x+2)(6-x)=0
=> x=-2(tm) hoặc x=6(tm)
maxM=4 <=> \(x+2=6-x\)
<=> x=2
Đúng 0
Bình luận (0)