ĐK tồn tại A với mọi x
\(A=\frac{x^2-x+1}{x^2+x+1}=\frac{x^2+x+1-2x}{x^2+x+1}=1+\frac{-2x}{x^2+x+1}=1+B\) (*)
Thay vì tìm GTNN & LN của B ta đi tìm GTNN,LN của B
\(B=\frac{-2x}{x^2+x+1}\)
Tìm Max\(2-B=2-\frac{-2x}{x^2+x+1}=\frac{2x^2+2x+2+2x}{x^2+x+1}=\frac{2\left(x^2+2x+1\right)}{x^2+x+1}=\frac{2\left(x+1\right)^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)
=>\(2-B\ge0\Rightarrow B\le2\Rightarrow A\le2+1=3\)đẳng thức khi Tim Min
\(B+\frac{2}{3}=\frac{-2x}{x^2+x+1}+\frac{2}{3}\Leftrightarrow\frac{-6x+2x^2+2x+2}{3\left(x^2+x+1\right)}=\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{2\left(x-1\right)^2}{3\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\ge0\)
\(B+\frac{2}{3}\ge0\Rightarrow B\ge-\frac{2}{3}\Rightarrow A\ge1-\frac{2}{3}=\frac{1}{3}\) đẳng thức khi x=-1
Kết luận:
GTNN A=1/3 khi x=1
GTLN A=3 khi x=-1
Dùng PP Miền giá trị đi bạn:
Gọi k là 1 giá trị ta có: (x² - x +1)/(x² + x +1) = k (1). Ta cần tìm k để PT (1) có nghiệm
Từ (1) ta có: (x² - x +1) = k.(x² + x +1)
<=> (1 - k)x² - (k + 1)x + (1 - k) = 0 (*)
Del ta =(k + 1)² - 4( 1 - k)² = -3k² + 10k - 3
Để (*) có nghiệm thì del ta ≥ 0
<=> -3k² + 10k - 3 ≥ 0
<=> 1/3 ≤ k ≤ 3
Vậy GTNN của A =1/3 khi (*) có nghiệm kép hay x = -b/2a=(k + 1)/2(1 - k) với k = 1/3 khi đó x = 1
(Thực ra dùng PP Miền giá trị ta còn tìm được Max A = 3 khi x = -1)
GTNN là
\(\frac{x^2-x+1}{x^2+x+1}=EQN+ax^2+bx+c=0=\frac{1-1+1}{1+1+1}=\frac{0,5}{-0,5}...GTNN=-1\)
GTLN là:
\(GTLN\\ \frac{x^2-x+1}{x^2+x+1}=EQN+ax^2+bx+c=0\\ \frac{1-1+1}{1+1+1}=\frac{0,75}{0,75}=1\\ GTLN=1\)