\(A=\sqrt{x-4}-2>=-2\)
Dấu = xảy ra khi x=4
\(B=-\sqrt{x-1}+\sqrt{3}< =\sqrt{3}\)
Dấu '=' xảy ra khi x=1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(A=\sqrt{x-4}-2>=-2\)
Dấu = xảy ra khi x=4
\(B=-\sqrt{x-1}+\sqrt{3}< =\sqrt{3}\)
Dấu '=' xảy ra khi x=1
Tìm GTNN hoặc GTLN của cac biểu thức sau;
a)\(A=\frac{2}{\sqrt{x}+5}\)
b)\(B=\frac{-3}{\sqrt{x}+7}\)
c)\(C=\frac{5}{2\sqrt{x}+1}\)
d)\(D=\frac{-7}{3\sqrt{x}+2}\).
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Caau1: Biết \(y^2+yz+z^2=1-\frac{3x^2}{2}\)Tìm GTLN, GTNN của A=x+y+z
Caau2:Cho x, y, z la các số dương thỏa mãn \(x^2+y^2+z^2\le3\)Tìm GTNN của biểu thức P=\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\)
Caau3: Tìm GTLN của P=\(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Caau4 TTìm GTNN của M=\(x-2\sqrt{xy}+3y-2\sqrt{x}+1\)
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
tính GTLN của các biểu thức sau:
a) A= 15 - \(\sqrt{x^2-5x+4}\)
b) B = - \(\sqrt{x^2+2x+3}-1\)
Tìm GTNN của biểu thức:
A=\(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}\)
Cho biểu thức: P\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
a) Rút gọn P
b) Tính GTNN của \(\sqrt{P}\)
1. Giải phương trình:
a) x2 - 2x = 2\(\sqrt{2x-1}\)
b) 2(x2 + 2) = 5\(\sqrt{x^2+1}\)
c) x2 + 3x + 1=(x+3)\(\sqrt{x^2+1}\)
2. Cho x,y,z >= o thỏa mãn điều kiện x+y+z=a
a) Tìm GTLN của biểu thức A= xy+yz+xz
b) Tìm GTNN của biểu thức B= x2+y2+z2
3. Cho 0<x<1, tìm GTNN của B=\(\dfrac{3}{1-x}\) + \(\dfrac{4}{x}\)
Tìm GTNN của biểu thức
A=\(3\sqrt{x-1}+4\sqrt{5-x}\)