\(C=\left(x^2+5x+5\right)\left(x^2+5x+7\right)\)
Đặt \(x^2+5x+5=t\Rightarrow x^2+5x+7=t+2\)
\(C=t\left(t+2\right)\)
\(C=t^2+2t+1-1\)
\(C=\left(t+1\right)^2-1\)
Ta có: \(\left(t+1\right)^2\ge0\Rightarrow C\ge-1\)
\(Min_C=-1\Leftrightarrow t+1=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)