ĐKXĐ: ...
\(P=\frac{8x^2-12x-4}{4\left(x-2\right)^2}=\frac{-17\left(x^2-4x+4\right)+25x^2-80x+64}{4\left(x^2-4x+4\right)}=-\frac{17}{4}+\frac{\left(5x-8\right)^2}{4\left(x-2\right)^2}\ge-\frac{17}{4}\)
Dấu "=" xảy ra khi \(x=\frac{8}{5}\)
ĐKXĐ: ...
\(P=\frac{8x^2-12x-4}{4\left(x-2\right)^2}=\frac{-17\left(x^2-4x+4\right)+25x^2-80x+64}{4\left(x^2-4x+4\right)}=-\frac{17}{4}+\frac{\left(5x-8\right)^2}{4\left(x-2\right)^2}\ge-\frac{17}{4}\)
Dấu "=" xảy ra khi \(x=\frac{8}{5}\)
Tìm GTNN của biểu thức: P=2x^2-3x-1/x^2-4x+4
Tìm GTNN của biểu thức: P=2x^2-3x-1/x^2-4x+4
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
1. Phân tích đa thức thành nhân tử
a . Xy+y^2-x-y
b. x^4+x^3+2x^2+x+1
2. Tìm x biết
a. 2/3x(x^2-4)=0
b. 2x^2-x-6=0
c. 4x^2-3x-1=0
d. 5x^2-16x+3=0
3. a. Tìm số a để đa thức 3x^3+10x^2+6x+a chia hết cho đa thức 3x+1
b .Cho x+y=3 và xy = 2. Tìm x^3+y^3
4. Tìm GTNN của biểu thức
P= x^2-5x
Q= x^2+2y^2+2xy-2x -6y+2015
5. Rút gọn biểu thức sau rồi tính giá trị biểu thức
a . (2x+3)^2+(2x-3)^2-(2x+3)(4x-6)+xy tại x=2, y=-1
b. (x-2)^2-(x-1)(x+1)-x(1-x) tại x=-2
6. Tìm x biết
a . x(x-2)+x-2=0
b. 5x(x-3)-x+3=0
c. 3x(x-5)-(x-1)(2+3x) =30
d . (x+2)(x+3)-(x-2)(x+5)=0
7. Tìm GTNN của biểu thức A=x^2-2x+2
a)Tìm GTLN của biểu thức:
A=\(\dfrac{3x^2-12x+20}{x-4x+5}\)
b)Tìm GTNN của biểu thức:
B=\(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN của biểu thức:
\(N=\dfrac{3x^2-4x}{x^2+1}\)
\(P=\dfrac{2x+1}{x^2+2}\)
Tìm GTNN của các biểu thức sau :
A=4x^2+4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10x+3}{\left(x-1\right)^2}\)
TÌm GTLN , GTNN của biểu thức sau : D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Bài 2: Tìm GTNN của các biểu thức sau:
a, \(A=x^2-3x+5\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
tìm GTNN của các biểu thức sau
A=4x^2=4xy+17y^2-8y+1
B=\(\frac{x^2-2}{x^2+2}\)
C=\(\frac{5x^2-10+3}{\left(x-1\right)^2}\)
D=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
Tìm GTLN của biểu thức sau
C=\(\frac{x^2+5x+7}{x^2+4x+4}\)
D=\(\frac{x^2-2x+2020}{x^2}\)