Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Minh Phương

tìm GTNN của biểu thức: A = \(\frac{x^2}{4}+x-1\) ; B = \(\frac{x^2-2x+2}{x^2+2x+3}\) ; C = \(\frac{x^2-2x-1}{2x^2+4x+9}\)

Nguyễn Việt Lâm
3 tháng 10 2020 lúc 17:04

\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)

\(A_{min}=-2\) khi \(x=-2\)

Với 2 câu B, C cần kiến thức lớp 9 để làm:

\(Bx^2+2Bx+3B=x^2-2x+2\)

\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)

\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)

\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)

\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)

\(2Cx^2+4Cx+9C=x^2-2x-1\)

\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)

\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)

\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)

\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Park Lin
Xem chi tiết
Thu Hà
Xem chi tiết
Trần Khương
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Sakura서 정
Xem chi tiết
Nguyễn Phương Tuệ Linh
Xem chi tiết
Thanh Thanh
Xem chi tiết
Huyền Trang
Xem chi tiết
Nguyễn Thế Sơn
Xem chi tiết