ĐK: \(\left(x-2\right)\left(x^2+1\right)+2x\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\ne0\Leftrightarrow x\ne-1;2\)
Ta có: \(A=\frac{x^2\left(x-2\right)+4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+1\right)}=\frac{x^2+4}{\left(x+1\right)^2}=\frac{t^2-2t+5}{t^2}\left(t=x+1\right)\)
\(=\frac{5}{t^2}-\frac{2}{t}+1=5\left(\frac{1}{t}-\frac{1}{5}\right)^2+\frac{4}{5}\ge\frac{4}{5}\)
Đẳng thức xảy ra khi t = 5 hay x=4
Vậy..