\(A=\frac{x^2-2x+2014}{x^2}\)
Ta có :
\(\frac{x^2-2x+2014}{x^2}-\frac{2013}{2014}=\frac{2014x^2-2.2014.x+2014^2-2013x^2}{2014x^2}=\frac{x^2-2.2004.x+2014^2}{2014x^2}=\frac{\left(x-2014\right)^2}{2014x^2}\ge\frac{2013}{2014}\)
\(\Rightarrow A\ge\frac{2013}{2014}\)
Dấu " = " xảy ra khi và chỉ khi \(x=2014\)
Vậy \(Min_A=\frac{2013}{2014}\Leftrightarrow x=2014\)