Mình đặt \(a=x+3\)
\(\Rightarrow A=\left(a+2\right)^4+\left(a-2\right)^4\)
\(=\left(a^4+8a^3+24a^2+32a+16\right)+\left(a^4-8a^3+24a^2-32a+16\right)\)
\(=2a^4+48a^2+32\ge32\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}2x^4=0\\48x^2=0\end{matrix}\right.\)\(\Leftrightarrow a=0\Leftrightarrow x=-3\)
Vậy \(minA=32\) khi x=-3