\(A=\frac{\left(x^2+6x+9\right)+\left(4x+12\right)+5}{\left(x+3\right)^2}=1+\frac{4}{x+3}+\frac{5}{\left(x+3\right)^2}\)
Đặt \(\frac{1}{x+3}=a\), ta có: \(A=5a^2+4a+1\)
\(A=\left(\sqrt{5}a+\frac{2}{\sqrt{5}}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
Đẳng thức xảy ra khi \(a=-\frac{2}{5}\) \(\Leftrightarrow x=-\frac{11}{2}\)