\(A=a^2+3a=\left(a^2+3a+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(a+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)
Có: \(\left(a+\dfrac{3}{2}\right)^2\ge0\forall a\Rightarrow\left(a+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x = -3/2
Vậy GTNN của A là -9/4 khi x = -3/2
---
\(N=2x-4x^2=-\left(4x^2-2x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(2x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Vì: \(-\left(2x-\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(2x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu ''='' xảy ra khi x = \(\dfrac{1}{4}\)
Vậy GTNN của N là \(\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{4}\)