\(B=5x^2+y^2-4xy-6x+13\)
\(=\left(4x^2-4xy+y^2\right)+\left(x^2-6x+9\right)+4\)
\(=\left(2x-y\right)^2+\left(x-3\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)
Vậy \(B_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)
\(C=9x^2+y^2-2xy-8x+10\)
\(=\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(4x^2-4x+1\right)+8\)
\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(2x-1\right)^2+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(C_{max}=8\Leftrightarrow x=y=\frac{1}{2}\)