Chỉ tìm được min thôi nhé bạn!\(A=x^2-8x+4=x^2-8x+16-12=\left(x-4\right)^2-12\ge-12\)
Đẳng thức xảy ra khi x = 4
Vậy Min A là -12 khi x = 4
\(B=2\left(x^2+\frac{3}{2}x-\frac{1}{2}\right)=2\left(x^2+2.x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}-\frac{1}{2}\right)\)
\(=2\left(x+\frac{3}{4}\right)^2-\frac{17}{8}\ge-\frac{17}{8}\)
Đẳng thức xảy ra khi x = -3/4
Vậy....
\(C=3\left(x^2+2x+\frac{2}{3}\right)=3\left(x^2+2x+1-\frac{1}{3}\right)\)
\(=3\left(x+1\right)^2-1\ge-1\)
Đẳng thức xảy ra khi x = -1
Vậy Min C là -1 khi x = -1
P/s: Câu c min đẹp thật:) x và C trùng nhau:D Mong là ko có tính toán sai:)
A= x^2 -8x+4
A= x^2-8x+16 - 12
A= -12 + (x-4)^2
(x-4)^2> hoặc = 0
=> -12+(x-4)^2 > hoặc = -12
=> A lớn hơn hoặc bằng -12
=> GTNN của A=-12 khi x-4=0 => x=4