Bài 1: Phân thức đại số.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Thanh Xuân

tìm GTLN và GTNN của biểu thức B=\(\dfrac{x^4+1}{x^4+2x^2+1}\)

Otaku Taki-kun
9 tháng 4 2017 lúc 17:00

Dạ, thưa chị Xuân , em tìm được chị cũng là 1 kì tích trong đời người rồi đó, tạm gác qua chuyện đó, bây h coi em ra tay nè:

+) Tìm MinB:

\(B=\dfrac{x^4+1}{x^4+2x^2+1}\)

\(=\dfrac{1}{2}+\dfrac{x^4+1}{x^4+2x^2+1}-\dfrac{1}{2}\)

\(=\dfrac{1}{2}+\dfrac{x^4+1-\dfrac{1}{2}x^4-x^2-\dfrac{1}{2}}{\left(x^2+1\right)^2}\)

\(=\dfrac{1}{2}+\dfrac{\dfrac{1}{2}x^4-x^2+\dfrac{1}{2}}{\left(x^2+1\right)^2}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{x^4-2x^2+1}{\left(x^2+1\right)^2}\)

\(=\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{\left(x^2-1\right)^2}{\left(x^2+1\right)^2}\)

\(\text{Ta có}:\dfrac{1}{2}\cdot\left(x^2-1\right)^2\ge0\)

\(< =>\dfrac{1}{2}\cdot\dfrac{\left(x^2-1\right)^2}{\left(x^2+1\right)^2}\ge0\)

\(< =>\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{\left(x^2-1\right)^2}{\left(x^2+1\right)^2}\ge\dfrac{1}{2}\)

Vậy Min B là \(\dfrac{1}{2}\) <=> x2-1=0 <=> (x-1)(x+1)=0 <=> x=1 hoặc x=-1.

P/s: Em biết rằng chị Xuân sẽ thắc mắc ko hiểu vì sao em biết tại sao phải cộng \(\dfrac{1}{2}\) vô, nhưng em sẽ ko tiết lộ đâu bởi vì đó là bí quyết riêng của em, thứ lỗi.

+) Tìm MaxB:

Ta có: \(x^4+1\ge1\)

\(x^4+2x^2+1\ge1\)

Suy ra: \(\dfrac{x^4+1}{x^4+2x^2+1}\le\dfrac{1}{1}\)

\(< =>\dfrac{x^4+1}{x^4+2x^2+1}\le1\)

Vậy Max B là 1 <=> x4=0 <=> x=0.

ngonhuminh
9 tháng 4 2017 lúc 21:45

Phương pháp xe đạp lộn ngược

\(x^4+1\ne0\forall x\)

\(\dfrac{1}{B}=\dfrac{\left(x^4+2x^2+1\right)}{x^4+1}=1+\dfrac{2x^2}{x^4+1}=1+2A\)

\(A\ge0\) đẳng thức khi x=0

\(\Rightarrow\dfrac{1}{B}\ge0\Rightarrow B\le1\)

đẳng thức khi A=0=> x=0

xét khi \(x\ne0\)

\(\dfrac{1}{A}=\dfrac{x^4+1}{x^2}=x^2+\dfrac{1}{x^2}\ge2\) đẳng thức x=+-1

\(\Rightarrow A\le\dfrac{1}{2}\) \(\Rightarrow\dfrac{1}{B}\le2\Rightarrow B\ge\dfrac{1}{2}\)

đẳng thức khi A=1/2=> x=+-1

Neet
9 tháng 4 2017 lúc 15:43

press \(x^2=a\left(a\ge0;a\ne-1\right)\)

\(B=\dfrac{a^2+1}{\left(a+1\right)^2}\Leftrightarrow B\left(a^2+2a+1\right)=a^2+1\)

\(\Leftrightarrow Ba^2+2Ba+B=a^2+1\Leftrightarrow\left(B-1\right)a^2+2Ba+\left(B-1\right)=0\)(1)

Phương trình ẩn a phải có nghiệm, xét

\(\Delta'=B^2-\left(B-1\right)^2\ge0\Leftrightarrow1.\left(2B-1\right)\ge0\Leftrightarrow B\ge\dfrac{1}{2}\)

\(B=\dfrac{1}{2},Pt\left(1\right)\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)(tmdk)

Vậy BMin=0,5 khi x=1(không có Max)


Các câu hỏi tương tự
susan gilengel
Xem chi tiết
gái xinh nè
Xem chi tiết
Sarah
Xem chi tiết
Park Chae Young
Xem chi tiết
Sarah
Xem chi tiết
Sarah
Xem chi tiết
Sarah
Xem chi tiết
Phan Thùy Trang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết