b)tìm giá trị nguyên của x để A có giá trị nguyên
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
Cho P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn P
b)Tìm các giá trị nguyên của x để P < -0,5
cho P=\(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) Rút gọn P
b)Tìm GTLN của P
Cho x,y,z là các số dương. Tìm GTLN của: \(A=\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+2\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+2\sqrt{xy}}\)
1. Cho x=\(\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{1}{8}\sqrt{2}\)
Tính giá trị của A= \(x^2+\sqrt{x^4+x+1}\)
2.Tính GTLN của: P=\(\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a) Rút gọn P
b) Cho \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=6\). Tìm GTLN của P
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
Tìm GTLN và GTNN của biểu thức :
a) \(y=\dfrac{x^2}{x^2-5x+7}\)
b) \(y=\dfrac{6-4x}{x^2+1}\)