\(A=2x-x^2-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left[\left(x-1\right)^2+2\right]\)
\(=-\left(x-1\right)^2-2\le-2,\forall x\)
Vậy \(MaxA=-2\) khi \(x=1\)
Nhớ tick
N =4x2+4x+1
=(2x+1)2
do (2x+1)2≥ 0 ∀ x
Min N =0 khi 2x+1=0
=>2x=-1
=>x=-
Đặt A = \(2x-x^2-4\)
\(-A=-2x+x^2+4\)
\(-A=x^2-2x+4\)
\(-A=x^2-2.x.1+1^2-1^2+4\)
\(-A=(x-1)^2-1+4\)
\(-A=(x-1)^2+3\) => \(A=-(x-1)^2-3 \) \(\le-3\)
=> max A = -3
A = 9 <=> \((x-1)^2=0\) => \(x-1=0\) => x = 1
Vậy max A = (-3) khi x = 1