\(A=5-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=7-\left(x-1\right)^2-\left(2y+1\right)^2\le7\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy \(MAX_A=7\) khi x = 1 và \(y=\dfrac{-1}{2}\)