câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
giúp mình cái này vớiii @@
cho hàm số : y = x2 + 2x - 3 , có đồ thị là parabol (P)
a. tìm tập xác định hàm số
b.lập bảng xét dấu để tìm khoảng cách của x để y > 0 : y < 0
c. xác định tọa độ đỉnh và trục đối xứng của (P)
tìm tọa độ giao điểm của (P) dói với Ox, Oy(nếu có)
từ đó vẽ đồ thị (P)
d. dựa vào đồ thị (P)biện luận theo m số nghiệm của phương trình: . x2 +2x - m2 - 2m = 0
. |x2 + 2x -3| = m
. x2 +2 |x| - m2 - 2m =0
tìm tất cả các giá trị của m sao cho hai parabol y=x^2+mx+(m+1)^2 và y=-x^2-(m+2)x-2(m+1) cắt nhau tại 2 điểm có hoành độ lần lượt là x1,x2 thỏa mãn P=|x1x2-3(x1+x2)| đạt GTLN
cho hàm sốy=x2 -4x
a)vẽ bảng biến thiên
b)tìm giao với ox,oy
c)tọa độ đỉnh của parabol
Mọi người giúp em với ạ! Em cảm ơn
Cho hàm số y=x^2-2(m-1)x + m^2 -3 có đồ thị Pm. Gọi S là tập hợp tất cả các giá trị của tham số để Pm cắt trục hoành tại hai điểm phân biệt A,B có hoành độ lần lượt là a,b thỏa mãn 1/a + 1/b =2. Tìm tập S
Tìm tham số m để đường thẳng y=2x+m cắt parabol y=-x^2 -2x -3 tại đúng một điểm. Tìm tọa độ giao điểm.
Mọi người giải giúp em với ạ! Em xin cảm ơn!
Cho đường thẳng d: y=x+m và hàm số y=x^2 - 3x + 2m + 1 có đồ thị (Pm). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để (Pm) cắt trục hoành tại hai điểm phân biệt A,B có nằm về hai phái của trục hoành. Tính số phần tử S
xác định parabol (P) : y=ax2-2x+c biết (P) cắt trục tung tại điểm có tung độbằng −1 và đạt giá trị nhỏ nhất bằng \(-\dfrac{4}{3}\)