\(A=\left|x-2001\right|+\left|x-1\right|\)
\(=\left|x-2001\right|+\left|1-x\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2001\right|+\left|1-x\right|\ge\left|x-2001+1-x\right|=2000\)
\(\Rightarrow A\ge2000\)
Dấu = khi \(\begin{cases}x-2001\le0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\le2001\\x\ge1\end{cases}\)\(\Rightarrow1\le x\le2001\)
Vậy MinA=2000 khi \(1\le x\le2001\)