Ta có
\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)
Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)
Để tìm được vế 3 ta xết 2 vế đầu tiên :
\(\left|x+2\right|+\left|y+2\right|=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)
Từ đó ta có \(x=-1;y=-2\)
Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)
Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)
Không biết đúng không nữa
Ta thấy: \(\begin{cases}\left|x+1\right|\\\left|y+2\right|\\\left|x-y+z\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|\ge0\)
Dấu = khi \(\begin{cases}\left|x+1\right|=0\\\left|y+2\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)
Thay vào |x-y+z|=0 đc:
|(-1)-(-2)+z|=0 <=>z=-1
Vậy x=z=-1 và y=-2
|x+1|+|y+2|+|x-y+z|=0
ta có:
|x+1|≥0
|y+2|≥0
|x-y+z|≥0
dấu "=" xảy ra khi và chỉ khi x+1=y+2=x-y+z=0
ta có:x+1=0
=>x=-1
y+2=0
=>y=-2
x-y+z=0
=>-1-(-2)+z=0
=>3+z=0
=>z=-3
vậy với |x+1|+|y+2|+|x-y+z|=0
thì x=-1;y=-2;z=-3