Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyenthihab

1 tim x,biết:

a,lx-2l=x-2

 b.l2x+3l=5x-1

2 tìm giá trị nhỏ nhất của biểu thức:

A=lx-2l+l3+yl

B=lx-2016l+lx-2017l

gúp mk với 

lưu bý nhỏ nhé mk ko biết làm thế nào để có dấu giá trị tuyệt đối nên mk đã lấy chữ l (lờ) thay  dấu giá trị tuyệt đối đó thông cảm cho mk nhé.

Lightning Farron
12 tháng 8 2016 lúc 20:04

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

Lightning Farron
12 tháng 8 2016 lúc 19:53

lần sau đăng ít thôi 

Nguyễn Phương HÀ
12 tháng 8 2016 lúc 19:57

1 tim x,biết:

a,lx-2l=x-2

<=>\(\left[\begin{array}{nghiempt}x-2=x-2\\x-2=2-x\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x\in R\\x=2\end{array}\right.\)

=> \(x\in R\)

 b.l2x+3l=5x-1

<=> \(\left[\begin{array}{nghiempt}2x+3=5x-1\\2x+3=1-5x\end{array}\right.\)

<=>\(\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{2}{7}\end{array}\right.\)

2 tìm giá trị nhỏ nhất của biểu thức:

A=lx-2l+l3+yl

ta có \(\left|x-2\right|\ge0\)

\(\left|3+y\right|\ge0\)

=> |x-2|+|y+3|\(\ge0\)

dấu = xảy ra khi x=2 và y=-3

=> Min A=0 khi x=2 và y=-3

B=lx-2016l+lx-2017l

ta có: 

B=lx-2016l+lx-2017l\(\ge\)|x-2016-x+2017|=1

 dấu = xảy ra khi (x-2016)(-x+2017)>=0

<=> \(2016\le x\le2017\)

Min B=1 khi 2016\(\le x\le\)2017

nguyenthihab
12 tháng 8 2016 lúc 19:57

nếu bn ko trả lời đc thì thôi vậy cho mk cảm ơn

nhưng mk cũng muốn bn hiểu răng fđó là bài toàn mk chưa hiểu nên mới càn giúp mong bn đừng phàn nàn mk.


Các câu hỏi tương tự
Elizabeth
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Ran Mori
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Nguyen Dieu Thao Ly
Xem chi tiết
Ran Mori
Xem chi tiết
Cathy Trang
Xem chi tiết
Trương Mai Khánh Huyền
Xem chi tiết
kate winslet
Xem chi tiết