`A=x^2+6x+y^2+4y+15`
`=(x^2+6x+9)+(y^2+4y+4)+2`
`=(x+3)^2+(y+2)^2+2`
Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`
`=>A_(min)=2 <=> x=-3; y=-2`.
Ta có: \(A=x^2+6x+y^2+4y+15\)
\(=x^2+6x+9+y^2+4y+4+2\)
\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(-3;-2)