Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Cho a, b, c là các số thực khác 1 thỏa mãn a.b.c = 1, biết rằng:
a^2 + b^2 + c^2 - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca)
Tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1
Cho 3 số thực a, b, c khác 0 thoả mãn ab+bc+ca=1. Tính giá trị của biểu thức: \(A=\dfrac{b^2+bc}{\sqrt{a^4+a^2}}.\dfrac{c^2+ca}{\sqrt{b^4+b^2}}.\dfrac{a^2+ab}{\sqrt{c^4+c^2}}\)
Cho a, b, c > 0. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{ab+bc+ca}{a^2+b^2+c^2}+\dfrac{\left(a+b+c\right)^3}{abc}\)
Cho các số dương a, b, c thoả mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\)
Cho a, b, c là các số thực dương thay đổi thoả mãn: a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=14\left(a^2+b^2+c^2\right)+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)