Ta có
|x−2010|\(\ge\)0 với mọi x
=>2012-|x−2010|\(\ge\)2012 với mọi x
=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x
Dấu bằng xảy ra <=>|x−2010|=0
<=>x-2012=0
<=>x=2012
Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012
Ta có
|x−2010|\(\ge\)0 với mọi x
=>2012-|x−2010|\(\ge\)2012 với mọi x
=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x
Dấu bằng xảy ra <=>|x−2010|=0
<=>x-2012=0
<=>x=2012
Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012
tìm giá trị nhỏ nhất của biểu thức:
B=\(\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
giá trị nhỏ nhất của biểu thức \(\left(x+\dfrac{1}{3^{ }}\right)^2+\dfrac{1}{100}\)là
A.\(\dfrac{-1}{2}\) B.\(\dfrac{1}{100}\)
C.\(\dfrac{-1}{100}\) D.\(\dfrac{81}{100}\)
GẤP LẮM MN ƠI
tìm giá trị lớn nhất của các biểu thức
\(A=5-3\left(2x-1\right)^2\) \(B=\dfrac{1}{2\cdot\left(x-1\right)^2+3}\) \(C=\dfrac{x^2+8}{x^2+2}\) \(D=\dfrac{1}{\sqrt{x}+3}\)
Tìm giá t\(1^4\)rị nhỏ nhất của các biểu thức sau:
a) A = 3.|1 -2x| - 5
b) B = \(\left(2x^2+1\right)\)\(^4\) - 3
c) C = \(\left|x-\dfrac{1}{2}\right|\) + (y+2)\(^2\) + 11
Tìm giá trị nhỏ nhất của: B= 2010 + |x - 2011| + |x - 2012| + |x - 2013|
Tìm giá trị nhỏ nhất của biểu thức:
a) \(A=3.\left|2x-\dfrac{3}{2}\right|+2021^0\)
b) \(B=2.\left|x-6\right|+3.\left(2y-1\right)^2+2021^0\)
Giúp mk nốt bài này nha
Tìm GTNN của biểu thức:
A=\(\left|x-2010\right|+\left(y+2011\right)^{2010}+201\) và giá trị tương ứng của x,y
TÌM GIÁ TRỊ NHỎ NHẤT CỦA
\(B=\left|\dfrac{1}{2}x+3\right|-\dfrac{5}{9}\)
1) Tìm giá trị nhỏ nhất của biểu thức :
\(\left|x-\dfrac{5}{2}\right|+\left|y+\dfrac{11}{3}\right|+\dfrac{4}{5}\)