\(C=\frac{25x^2+20x+5}{2}\\ C=\frac{\left(5x+2\right)^2+1}{2}\)
Có \(\left(5x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(5x+2\right)^2+1\ge1\forall x\\ \Rightarrow C=\frac{\left(5x+2\right)^2+1}{2}\ge\frac{1}{2}\forall x\)
Vậy \(C_{min}=\frac{1}{2}\)
\("="\Leftrightarrow\left(5x+2\right)^2=0\\ \Leftrightarrow5x+2=0\\ \Leftrightarrow x=\frac{-2}{5}\)