\(2x^2-2x+3\)
\(=\left(x^2-2x+1\right)+x^2+2\)
\(=\left(x-1\right)^2+x^2+2\)
Vì \(\left(x-1\right)^2\ge0\) \(_{\forall x}\)
\(x^2\ge0\) \(\forall x\)
\(\Rightarrow\left(x-1\right)^2+x^2\ge0\) \(\forall x\)
\(\Rightarrow\left(x-1\right)^2+x^2+2\ge2\) \(\forall x\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min \(2x^2-2x+3=2\Leftrightarrow x=1.\)
A= 2x2 - 2x +3
=\(2x^2-2x+\dfrac{1}{2}+\dfrac{5}{2}\)
=\(\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{5}{2}\)
=2(x2-x+\(\dfrac{1}{4}\) )+\(\dfrac{5}{2}\)
=\(2\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{2}\)
=>A≥\(\dfrac{5}{2}\)
=>MinA=\(\dfrac{5}{2}\) khi
x-\(\dfrac{1}{2}\)=0
=>x=\(\dfrac{1}{2}\)
vậy minA=\(\dfrac{5}{2}\) khi x=\(\dfrac{1}{2}\)
A= 2x2 - 2x + 3
A = 2( x2 - x ) + 3
A = 2( x2 -2.\(\dfrac{1}{2}x+\dfrac{1}{4}\)) + 3 - \(\dfrac{1}{2}\)
A = 2( x - \(\dfrac{1}{2}\))2 + \(\dfrac{5}{2}\)
Do : 2( x - \(\dfrac{1}{2}\))2 ≥ 0 ∀x
=>2( x - \(\dfrac{1}{2}\))2 + \(\dfrac{5}{2}\) ≥ \(\dfrac{5}{2}\)∀x
=> Amin = \(\dfrac{5}{2}\) ⇔ x = \(\dfrac{1}{2}\)