\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow Min_A=-3\Leftrightarrow x=2\)
Giải:
\(A=x^2-4x+1\)
\(\Leftrightarrow A=x^2-4x+4-3\)
\(\Leftrightarrow A=\left(x^2-4x+4\right)-3\)
\(\Leftrightarrow A=\left(x-2\right)^2-3\ge-3;\forall x\)
\(\Leftrightarrow A_{Min}=-3\)
\("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
\(x^2-4x+1\\ =x^2-4x+4-3\\ =\left(x-2\right)^2-3\)
Ta có:\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2-3\ge-3\\\)
Vậy GTNN A=-3 ⇔x=2