\(f\left(x\right)=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=\frac{3}{4}.6^2=27\)
\(f\left(x\right)_{min}=27\) khi \(2x+1=5-2x\Leftrightarrow x=1\)
\(f\left(x\right)=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=\frac{3}{4}.6^2=27\)
\(f\left(x\right)_{min}=27\) khi \(2x+1=5-2x\Leftrightarrow x=1\)
Tìm giá trị lớn nhất M của hàm số f(x) =\(\frac{x}{\left(x+1\right)^2}\) với x>0
Tìm giá trị nhỏ nhất m của hàm số f(x) = \(\frac{x^2+32}{4\left(x-2\right)}\)với x > 2
Giúp em đưa ra lời giải chi tiết và dễ hiểu với bài này:
Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm m để phương trình có hai nghiệm phân x1,x2 sao cho biểu thức \(P=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất.
Tìm tập tất cả các giá trị của tham số m để phương trình \(3\left(\text{|x-1| +2-m}\right)=\text{|x - 1| + m - 5}\)
có nghiệm là:
Tìm giá trị nhỏ nhất m của hàm số f(x) = \(\frac{2x^3+4}{x}\) với x>0
Tìm giá trị của tham số m sao cho hệ bất phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x^2+2x+m\le0\\x^2-4x-6m\le0\end{matrix}\right.\)
Tìm giá trị lớn nhất M của hàm số f(x) = \(\frac{x}{x^2+4}\) với x>0
Tìm giá trị nhỏ nhất m của hàm số f(x) = \(\frac{2x^2+4}{x}\)với x>0
cho pt bậc hai ẩn x : \(2x^2+2mx+m^2-2=0\)
a) xác định m để pt có 2 nghiệm.
b) gọi x1,x2 là nghiệm của pt trên tìm giá trị lớn nhất của biểu thức: A=\(\left|2x_1x_2+x_1+x_2-4\right|\)