Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê

Tìm giá trị lớn nhất, giá trị nhỏ nhất: (nếu có thể)

\(A=\dfrac{8x^2-9}{x^2+3}\)

Nguyễn Việt Lâm
21 tháng 8 2020 lúc 21:31

\(A=\frac{8\left(x^2+3\right)-33}{x^2+3}=8-\frac{33}{x^2+3}< 8\)

\(\Rightarrow\) Không tồn tại \(A_{max}\)

\(x^2+3\ge3\Rightarrow\frac{33}{x^2+3}\le11\)

\(\Rightarrow A\ge8-11=-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=0\)


Các câu hỏi tương tự
dream XD
Xem chi tiết
Vũ Ngọc Thảo Nguyên
Xem chi tiết
crewmate
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Lê Khả Duy
Xem chi tiết
dream XD
Xem chi tiết
Lê
Xem chi tiết
L.A.Đ.H L(*OεV*)E(灬♥ω♥...
Xem chi tiết