Đặt A=\(\dfrac{5}{4x^2+4x+2y+y^2+3}\)
ta có 4x2+4x+2y+y2+3
=(4x2+4x+1)+(y2+2y+1)+1
=(2x+1)2+(y+1)2+1
Do (2x+1)2 ≥0 ∀x
(y+1)2 ≥0 ∀ y
=>(2x+1)2+(y+1)2 ≥0
=>(2x+1)2+(y+1)2+1≥1
=>\(\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\le\dfrac{5}{1}\)
=>GTLN của A =5 khi
\(\left\{{}\begin{matrix}2x+1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=-1\end{matrix}\right.\)