\(P=2x-2x^2-5\)
\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{5}{2}\right]\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)
\(\)\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
hay P ≤ \(-\dfrac{9}{2}\)
Dấu = xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(Max_P=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)