\(D=\dfrac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{matrix}\right.\)
\(MAX_D\Rightarrow MIN_{3\left|x\right|-1}\)
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(\Rightarrow MAX_D=\dfrac{2.\left|\dfrac{2}{3}\right|+3}{3.\left|\dfrac{2}{3}\right|-1}=\dfrac{\dfrac{13}{3}}{1}=\dfrac{13}{3}\)