Đặt x2=t \(\left(t\ge0\right)\)
=> pt 1 trở thành at2 + bt +c =0 \(\left(2\right)\)
Để pt 1 cso 4 nghiệm phân biệt thì pt 2 phải có 2 nghiệm dương phân biệt
=>\(\left\{{}\begin{matrix}a\ne0\\\Delta>0\\S>0\\P>0\end{matrix}\right.\)
Đặt x2=t \(\left(t\ge0\right)\)
=> pt 1 trở thành at2 + bt +c =0 \(\left(2\right)\)
Để pt 1 cso 4 nghiệm phân biệt thì pt 2 phải có 2 nghiệm dương phân biệt
=>\(\left\{{}\begin{matrix}a\ne0\\\Delta>0\\S>0\\P>0\end{matrix}\right.\)
1.giải hệ phương trình [2x+1\x+1+3y\y-1=1] [3x\x+1-4y-y-1=10].2.Cho phương trình ẩn:x2+mx-2m-4=0,a:giải phương trình khi m=2,bTìm giá trị của tham số m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1[1-x2]+x2[1-x1]
(Đề thi học sinh giỏi Bulgari - Mùa xuân 1997)
Tìm giá trị của m để phương trình :
\(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\)
có đúng 3 nghiệm phân biệt
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
Câu 1: cho phương trình : mx4 - 2(m-1)x2 + m - 1= 0
Tìm m để phương trình
a.có nghiệm duy nhất
b. có 2 nghiệm phân biệt
c. có 3 nghiệm phân biệt
d, có 4 nghiệm phân biệt
Câu 2 : cho phương trình : (m-1)x2 + 1(m+2)x +m -1 =0
tìm m
a, có một nghiệm
b, có 2 nghiệm cùng dấu
Cho phương trình 2x2−(m+1)x+m-1=0. Tìm các giá trị của m để phương trình có hai nghiệm bằng tích của chúng.
Tìm m để phương trình có 4 nghiệm phân biệt
\(x^4-x^2+2mx-m^2=0\)
Cho phương trình
\(x^2+2\left(m+1\right)x+m^2=0\)
a.Tim m để phương trình có nghiệm
b.Tìm m để phương trinh có 2 nghiệm \(x_1x_2\). Thỏa mãn \(x^2_1+x_2^2-5x_1x_2=13\)
Bài tập 2: Cho phương trình x2 – 2(m – 1)x + 2m – 3 = 0 (m là tham số) (1)
1. Giải phương trình (1) khi m = 5.
2. CMR: Phương trình (1) luôn có nghiệm với mọi m.
3. Trong trường hợp (1) có hai nghiệm phân biệt.Thiết lập hệ thức liên hệ giữa x1, x2 độc lập với m.
4. Tìm m để phương trình (1) có 2 nghiệm trái dấu.
Cho phương trình
\(x^2-2mx+m^2-9=0\)
a.Giải phương trình với m=-2
b.Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(x_1^2+x_2^2\left(x_1+x_2\right)=12\)