1.giải hệ phương trình [2x+1\x+1+3y\y-1=1] [3x\x+1-4y-y-1=10].2.Cho phương trình ẩn:x2+mx-2m-4=0,a:giải phương trình khi m=2,bTìm giá trị của tham số m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1[1-x2]+x2[1-x1]
Bài tập 2: Cho phương trình x2 – 2(m – 1)x + 2m – 3 = 0 (m là tham số) (1)
1. Giải phương trình (1) khi m = 5.
2. CMR: Phương trình (1) luôn có nghiệm với mọi m.
3. Trong trường hợp (1) có hai nghiệm phân biệt.Thiết lập hệ thức liên hệ giữa x1, x2 độc lập với m.
4. Tìm m để phương trình (1) có 2 nghiệm trái dấu.
x2-(m+2)x+m2-1=0
Gọi x1,x2 là 2 nghiệm của phương trình. Tìm m thỏa mãn x1-x2=2
Tìm giá trị nguyên nhỏ nhất của m để pt có 2 nghiệm khác nhau
(Đề thi học sinh giỏi Bulgari - Mùa xuân 1997)
Tìm giá trị của m để phương trình :
\(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\)
có đúng 3 nghiệm phân biệt
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
Cho phương trình
\(x^2+2\left(m+1\right)x+m^2=0\)
a.Tim m để phương trình có nghiệm
b.Tìm m để phương trinh có 2 nghiệm \(x_1x_2\). Thỏa mãn \(x^2_1+x_2^2-5x_1x_2=13\)
Cho phương trình
\(x^2-2mx+m^2-9=0\)
a.Giải phương trình với m=-2
b.Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(x_1^2+x_2^2\left(x_1+x_2\right)=12\)
giúp mình với
cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\). Tìm các giá trị tham số của m để hệ phương trình:
a) Có nghiệm duy nhất;
b) Vô nghiệm;
c)Vô số nghiệm.
1, Cho pt: x2 - 5x + m - 4 = 0
a) Tìm m để pt có 2 nghiệm trái dấu.
b) Tìm m để pt có 2 nghiệm dương phân biệt.
c) Tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa mãn: (x12 - 4x1 + m - 2)x1 + x2(x2 + 2) = 23.
2, Cho pt: x2 + 6x + m + 7 = 0
a) Tìm m để pt có 2 nghiệm âm phân biệt.
b) Tìm m để pt chỉ có 1 nghiệm.
c) Tìm m để pt có 2 nghiệm phân biệt x1, x2 thỏa mãn: (x22 + 7x2 + m + 4)x2 + x1(x1 - 3) = 44.
3, Cho pt: x2 - mx + m - 1 = 0
a) Tìm m để pt có 2 nghiệm khác nhau.
b) Tìm m để pt có 2 nghiệm phân biệt và cùng dấu. Khi đó pt có 2 nghiệm cùng dấu gì?
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn: [ x12 - (m + 1)x1 + m + 4].[ x22 - (m + 1)x2 + m + 4] = -4