Áp dụng BĐT Cauchy:
\(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)=\left(a^2+\frac{1}{4}+b+\frac{1}{2}\right)\left(b^2+\frac{1}{4}+a+\frac{1}{2}\right)\ge\left(a+b+\frac{1}{2}\right)\left(b+a+\frac{1}{2}\right)\)
\(=\left(a+b+\frac{1}{2}\right)^2=\left(a+\frac{1}{4}+b+\frac{1}{4}\right)^2\ge4\left(a+\frac{1}{4}\right)\left(b+\frac{1}{4}\right)\)
\(=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)