Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Lâm

làm sao biến đổi từ BĐT này \(\frac{\left(1-2a\right)\left(1-2b\right)}{\left(1-a\right)\left(1-b\right)}\ge4\cdot\left(\frac{1-a-b}{2-a-b}\right)^2\) thành \(\frac{\left(a-b\right)^2\left(2a+2b-3\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\) ???

giúp mình với

Nguyễn Việt Lâm
6 tháng 9 2020 lúc 17:41

\(\frac{\left(1-2a\right)\left(1-2b\right)}{\left(1-a\right)\left(1-b\right)}-\frac{4\left(1-a-b\right)^2}{\left(2-a-b\right)^2}=\frac{\left(1-2a\right)\left(1-2b\right)\left(2-a-b\right)^2-4\left(1-a\right)\left(1-b\right)\left(1-a-b\right)^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{2a^3-2a^2b-3a^2-2ab^2+6ab+2b^3-3b^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{\left(2a^3-4a^2b+2ab^2\right)+\left(2a^2b-4ab^2+2b^3\right)-3\left(a^2-2ab+3b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{2a\left(a^2-2ab+b^2\right)+2b\left(a^2-2ab+b^2\right)-3\left(a^2-2ab+b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{\left(a-b\right)^2\left(2a+2b-3\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)


Các câu hỏi tương tự
nam
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
Angela jolie
Xem chi tiết
0916612007
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
bach nhac lam
Xem chi tiết
Big City Boy
Xem chi tiết
zZz Cool Kid zZz
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết