Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)
\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)
Vậy \(\left(a;b\right)=\left(-4;1\right)\)