Mọi người giúp mk bài này với, nếu đề bài sai thì bảo mình 1 câu nha! Cám ơn các bn nhìu!!!
Cho các số x,y thỏa mãn: \(\left(x+\sqrt{3+x^2}\right).\left(y+\sqrt{3+y^2}\right)=3\). Tính giá trị của biểu thức: \(A=4x^2+xy+y^2+15\)
Nếu đề bài sai thì bảo mình 1 câu nha! Cám ơn các bn nhìu!!!
Rút gọn biểu thức: \(B=\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}:\dfrac{x-1}{x+\sqrt{x}+1}\)
*Bài 1:
Xđ các hệ số a, b, c, d của đa thức P(x) = ax³ + bx²+cx-2007.
Biết P(x) chia cho (x-13) có số dư là 1 ; chia cho (x-3) có số dư là 2 ; chia cho (x-14) có số dư là 3.
*Bài 2:
Cho đa thức:
P(x) = 2x6 - 4x5 + 7x4 - 4x3 -8x2+5x- 2012.Gọi r1 và r2 lần lượt là số dư khi chia P(x) cho đa thức x-2,3 và 3x+5
Tính B=0,0(2012).r1 + 3r2
* Bài 3: Cho P(x² +1)=x4 +5x² +3
Tính P(2010) ?
Giải giúp tớ với càng chi tiết càng tốt ạ. Mai tớ nộp rồi !
Cho a,b,c là các số nguyên.Các đa thức f(x) = ax2+bx+c và g(x) = (c-b)x2 + (c – a)x + (a+b). Chứng minh rằng 2 phương trình này có nghiệm chung khi a + b +2c chia hết cho 3
Giúp mình với ạ.Mk cảm ơn nhiều
Giải chi tiết giúp mình câu b nha. Cám ơn các bn nhìu
Cho \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\); \(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0, \(x\ne1\)
a) Tính P=A:B
b) Tìm giá trị của m để tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
Các bạn giải thích cho mình định lí này với (Nêu ví dụ cụ thể nha):
Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì \(\dfrac{f\left(1\right)}{a-1};\dfrac{f\left(-1\right)}{a+1}\) đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
Xác định các hệ sô a,b,c,d các đa thức \(P\left(x\right)=ãx^3+bx^2+cx-2007\) để sao cho P(x) chia cho (x-13) có số dư là 1,
chia cho (x-3) có số dư là 2 ; chia cho (x-14) có số dư là 3.
lúc nãy gõ thiếu đề, h gõ lại ạ
1.giải phương trình: \(\sqrt{x+4}+\sqrt{x-4}=2\left(\sqrt{x^2-16}+x-6\right)\)
2. cho \(T=sin^6x+cos^6x+3sin^2x.cos^2x+tan^2x.cos^2x+cotan^2x.sin^2x\left(0< x< 90^0\right)\). CMR giá trị của T không phụ thuộc vào biến x
3. cho a, b là các số dương thỏa mãn a+b=1. Cmr: \(B=a^3+b^3+8\left(a^4+b^4\right)+\frac{2}{ab}\ge\frac{37}{4}\). Đẳng thức xảy ra khi nào?
4. giải bằng hai cách: tìm x, y nguyên thỏa mãn phương trình: \(x^2-2y^2=1\)
Tìm các số nguyên x,y thoả mãn \(y=\dfrac{x^3+1}{x^4+1}\)
Giải hẳn cho mình ra với ạ. Cảm ơn các bạn rất nhiềuuuu