Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$
$\Leftrightarrow x^4+x\vdots x^4+1$
$\Leftrightarrow x^4+1+x-1\vdots x^4+1$
$\Leftrightarrow x-1\vdots x^4+1$
Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$
Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$
Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$
$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)
Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$
$\Leftrightarrow x^4+x\leq 0$
$\Leftrightarrow x(x^3+1)\leq 0$
$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$
Với $x=-1$ thì $y=0$
Với $x=0$ thì $y=1$
Vậy..........