Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thơ Anh

Có tồn tại hay không các số nguyên x,y,z,t sao cho \(2019=\dfrac{x^2+y^2}{z^2+t^2}\)

Các bạn giải hết cho mình với nhé, mình cảm ơn nhiều<3

 

Trần Minh Hoàng
13 tháng 3 2021 lúc 22:59

Giả sử tồn tại x, y, z, t thỏa mãn.

Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).

Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).

Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).

Bổ đề dc cm.

Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).

Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).

Đặt x = 3x', y = 3y', z = 3z', t = 3t'.

Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).

Cmtt, ta có \(x',y',z',t'⋮3\).

Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).

Do đó x = y = z = t = 0 (vô lí).

Vậy không tồn tại...


Các câu hỏi tương tự
Thơ Anh
Xem chi tiết
Thơ Anh
Xem chi tiết
Thơ Anh
Xem chi tiết
khoa
Xem chi tiết
Lê Đình Dương
Xem chi tiết
Ngọc Hồng
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Shiota Nagisa
Xem chi tiết
Pham Anh Tuan
Xem chi tiết