tìm nghiệm của các phương trình sau trong khoảng đã cho : a) \(\sin2x=-\frac{1}{2}\) với \(0\le x\le\pi\) ; b) \(\cos\left(x-5\right)=\frac{\sqrt{3}}{2}\) với \(-\pi\le x\le\pi\)
Tìm m để phương trình sau có 5 nghiệm phân biệt thuộc khoảng \(\left(-\dfrac{\pi}{2};3\pi\right)\)
2sin2x - (5m + 1)sinx + 2m2 + 2m = 0
Giải phương trình:
a) \(tan\left(\frac{\pi}{2}sin\pi\left(x+1\right)\right)=1\)
b) \(tan\left(\frac{\pi}{3}cot\pi x\right)=\frac{1}{\sqrt{3}}\)
c) \(sin\left(\pi tan3x\right)=\frac{1}{2}\)
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
Bài 1: Tìm m để phương trình cosx=2m có một nghiệm duy nhất thuộc \(\left[\frac{-\pi}{2};\frac{\pi}{3}\right]\)
Bài 2: Tìm số nghiệm thuộc \(\left(-\pi;\pi\right)\) của phương trình \(cot\left(3x-\frac{\pi}{3}\right)=cot\left(x+\frac{\pi}{4}\right)\)
Bài 3: Tất cả các nghiệm của phương trình \(sin\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\) được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác
Tìm m để phương trình sau có nghiệm:
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt{3}.sin2x-cos2x\)
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
Bài 1: :Giải phương trình: \(sin\left(\frac{\pi}{3}cosx-\frac{8\pi}{3}\right)=0\)
Bài 2: Giải phương trình: \(cot\left(\frac{\pi}{3}cos2\pi x\right)=\sqrt{3}\)
\(\sqrt{3}cos\left(x+\frac{pi}{2}\right)+sinx\left(x-\frac{pi}{2}\right)=2sin2x\)